Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51.924
Filtrar
1.
Carbohydr Polym ; 335: 122106, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616080

RESUMO

More than 3000 proteins are now known to bind to glycosaminoglycans (GAGs). Yet, GAG-protein systems are rather poorly understood in terms of selectivity of recognition, molecular mechanism of action, and translational promise. High-throughput screening (HTS) technologies are critically needed for studying GAG biology and developing GAG-based therapeutics. Microarrays, developed within the past two decades, have now improved to the point of being the preferred tool in the HTS of biomolecules. GAG microarrays, in which GAG sequences are immobilized on slides, while similar to other microarrays, have their own sets of challenges and considerations. GAG microarrays are rapidly becoming the first choice in studying GAG-protein systems. Here, we review different modalities and applications of GAG microarrays presented to date. We discuss advantages and disadvantages of this technology, explain covalent and non-covalent immobilization strategies using different chemically reactive groups, and present various assay formats for qualitative and quantitative interpretations, including selectivity screening, binding affinity studies, competitive binding studies etc. We also highlight recent advances in implementing this technology, cataloging of data, and project its future promise. Overall, the technology of GAG microarray exhibits enormous potential of evolving into more than a mere screening tool for studying GAG - protein systems.


Assuntos
Bioensaio , Glicosaminoglicanos , Ligação Competitiva , Análise em Microsséries , Pesquisa
2.
J Cell Mol Med ; 28(6): e18151, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429903

RESUMO

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, the incidence of which increases with age, and the pathological changes in the brain are irreversible. Recent studies have highlighted the essential role of long noncoding RNAs (lncRNAs) in AD by acting as competing endogenous RNAs (ceRNAs). Our aim was to construct lncRNA-associated ceRNA regulatory networks composed of potential biomarkers for the early stage of AD. AD related datasets come from AlzData and GEO databases. The R package 'Limma' identifies differentially expressed genes (DEGs), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases for functional enrichment analysis. Protein-protein interactions (PPIs) in DEGs were constructed in the STRING database, and Cytoscape software identified DEGs. Convergent functional genomics (CFG) analysis of differentially expressed hub genes (referred to as early-DEGs) in the brain before the development of AD pathology. The AlzData database analyses the expression levels of early-DEGs in different nerve cells. The lncRNA-miRNA-mRNA regulatory network was established according to the ceRNA hypothesis. We identified four lncRNAs (XIST, NEAT1, KCNQ1OT1 and HCG18) and four miRNAs (hsa-let-7c-5p, hsa-miR-107, hsa-miR-129-2-3p and hsa-miR-214-3p) were preliminarily identified as potential biomarkers for early AD, competitively regulating Atp6v0b, Atp6v1e1 Atp6v1f and Syt1. This study indicates that NEAT1, XIST, HCG18 and KCNQ1OT1 act as ceRNAs in competitive binding with miRNAs to regulate the expression of Atp6v0b, Atp6v1e1, Atp6v1f and Syt1 before the occurrence of pathological changes in AD.


Assuntos
Doença de Alzheimer , MicroRNAs , RNA Longo não Codificante , Humanos , Doença de Alzheimer/genética , RNA Longo não Codificante/genética , Ligação Competitiva , MicroRNAs/genética , Biomarcadores , Redes Reguladoras de Genes
3.
Nat Commun ; 15(1): 1981, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438391

RESUMO

Within a cell, synthetic and native genes compete for expression machinery, influencing cellular process dynamics through resource couplings. Models that simplify competitive resource binding kinetics can guide the design of strategies for countering these couplings. However, in bacteria resource availability and cell growth rate are interlinked, which complicates resource-aware biocircuit design. Capturing this interdependence requires coarse-grained bacterial cell models that balance accurate representation of metabolic regulation against simplicity and interpretability. We propose a coarse-grained E. coli cell model that combines the ease of simplified resource coupling analysis with appreciation of bacterial growth regulation mechanisms and the processes relevant for biocircuit design. Reliably capturing known growth phenomena, it provides a unifying explanation to disparate empirical relations between growth and synthetic gene expression. Considering a biomolecular controller that makes cell-wide ribosome availability robust to perturbations, we showcase our model's usefulness in numerically prototyping biocircuits and deriving analytical relations for design guidance.


Assuntos
Escherichia coli , Genes Sintéticos , Escherichia coli/genética , Conscientização , Ligação Competitiva , Ciclo Celular
4.
Mol Pharmacol ; 105(4): 301-312, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38346795

RESUMO

Atypical chemokine receptor 3 (ACKR3), formerly referred to as CXCR7, is considered to be an interesting drug target. In this study, we report on the synthesis, pharmacological characterization and radiolabeling of VUF15485, a new ACKR3 small-molecule agonist, that will serve as an important new tool to study this ß-arrestin-biased chemokine receptor. VUF15485 binds with nanomolar affinity (pIC50 = 8.3) to human ACKR3, as measured in [125I]CXCL12 competition binding experiments. Moreover, in a bioluminescence resonance energy transfer-based ß-arrestin2 recruitment assay VUF15485 acts as a potent ACKR3 agonist (pEC50 = 7.6) and shows a similar extent of receptor activation compared with CXCL12 when using a newly developed, fluorescence resonance energy transfer-based ACKR3 conformational sensor. Moreover, the ACKR3 agonist VUF15485, tested against a (atypical) chemokine receptor panel (agonist and antagonist mode), proves to be selective for ACKR3. VUF15485 labeled with tritium at one of its methoxy groups ([3H]VUF15485), binds ACKR3 saturably and with high affinity (K d = 8.2 nM). Additionally, [3H]VUF15485 shows rapid binding kinetics and consequently a short residence time (<2 minutes) for binding to ACKR3. The selectivity of [3H]VUF15485 for ACKR3, was confirmed by binding studies, whereupon CXCR3, CXCR4, and ACKR3 small-molecule ligands were competed for binding against the radiolabeled agonist. Interestingly, the chemokine ligands CXCL11 and CXCL12 are not able to displace the binding of [3H]VUF15485 to ACKR3. The radiolabeled VUF15485 was subsequently used to evaluate its binding pocket. Site-directed mutagenesis and docking studies using a recently solved cryo-EM structure propose that VUF15485 binds in the major and the minor binding pocket of ACKR3. SIGNIFICANCE STATEMENT: The atypical chemokine receptor atypical chemokine receptor 3 (ACKR3) is considered an interesting drug target in relation to cancer and multiple sclerosis. The study reports on new chemical biology tools for ACKR3, i.e., a new agonist that can also be radiolabeled and a new ACKR3 conformational sensor, that both can be used to directly study the interaction of ACKR3 ligands with the G protein-coupled receptor.


Assuntos
Quimiocina CXCL12 , Receptores CXCR4 , Humanos , Receptores CXCR4/metabolismo , Quimiocina CXCL12/metabolismo , Quimiocina CXCL11/metabolismo , Transdução de Sinais , Ligantes , Ligação Competitiva
5.
J Hazard Mater ; 466: 133650, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309170

RESUMO

Organophosphate esters (OPEs) can cause adverse biological effects through binding to integrin αvß3. However, few studies have focused on the binding activity and mechanism of OPEs to integrin αvß3. Herein, a comprehensive investigation of the mechanisms by which OPEs bind to integrin αvß3 and determination of the binding affinity were conducted by in vitro and in silico approaches: competitive binding assay as well as pharmacophore, molecular docking and QSAR modeling. The results showed that all 18 OPEs exhibited binding activities to integrin αvß3; moreover, hydrogen bonds were identified as crucial intermolecular interactions. In addition, essential factors, including the -P = O structure of OPEs, key amino acid residues and suitable cavity volume of integrin αvß3, were identified to contribute to the formation of hydrogen bonds. Moreover, aryl-OPEs exhibited a lower binding activity with integrin αvß3 than halogenated- and alkyl-OPEs. Ultimately, the QSAR model constructed in this study was effectively used to predict the binding affinity of OPEs to integrin αvß3, and the results suggest that some OPEs might pose potential risks in aquatic environments. The results of this study comprehensively elucidated the binding mechanism of OPEs to integrin αvß3, and supported the environmental risk management of these emerging pollutants.


Assuntos
Ésteres , Integrina alfaVbeta3 , Farmacóforo , Ligação Competitiva , China , Monitoramento Ambiental , Ésteres/química , Retardadores de Chama , Integrina alfaVbeta3/química , Integrina alfaVbeta3/metabolismo , Simulação de Acoplamento Molecular , Organofosfatos , Relação Quantitativa Estrutura-Atividade
6.
J Med Chem ; 67(2): 1115-1126, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38215028

RESUMO

The development of more effective drugs requires knowledge of their bioavailability and binding efficacy directly in the native cellular environment. In-cell nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for investigating ligand-target interactions directly in living cells. However, the target molecule may be NMR-invisible due to interactions with cellular components, while observing the ligand by 1H NMR is impractical due to the cellular background. Such limitations can be overcome by observing fluorinated ligands by 19F in-cell NMR as they bind to the intracellular target. Here we report a novel approach based on real-time in-cell 19F NMR that allows measuring ligand binding affinities in human cells by competition binding, using a fluorinated compound as a reference. The binding of a set of compounds toward Hsp90α was investigated. In principle, this approach could be applied to other pharmacologically relevant targets, thus aiding the design of more effective compounds in the early stages of drug development.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Ligação Competitiva , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Ligação Proteica , Flúor/química
7.
Cell Rep ; 43(1): 113639, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38175753

RESUMO

The nuclear cap-binding complex (CBC) coordinates co-transcriptional maturation, transport, or degradation of nascent RNA polymerase II (Pol II) transcripts. CBC with its partner ARS2 forms mutually exclusive complexes with diverse "effectors" that promote either productive or destructive outcomes. Combining AlphaFold predictions with structural and biochemical validation, we show how effectors NCBP3, NELF-E, ARS2, PHAX, and ZC3H18 form competing binary complexes with CBC and how PHAX, NCBP3, ZC3H18, and other effectors compete for binding to ARS2. In ternary CBC-ARS2 complexes with PHAX, NCBP3, or ZC3H18, ARS2 is responsible for the initial effector recruitment but inhibits their direct binding to the CBC. We show that in vivo ZC3H18 binding to both CBC and ARS2 is required for nuclear RNA degradation. We propose that recruitment of PHAX to CBC-ARS2 can lead, with appropriate cues, to competitive displacement of ARS2 and ZC3H18 from the CBC, thus promoting a productive rather than a degradative RNA fate.


Assuntos
Complexo Proteico Nuclear de Ligação ao Cap , RNA , Ligação Competitiva , Complexo Proteico Nuclear de Ligação ao Cap/química , RNA/genética , RNA Polimerase II/metabolismo , RNA Nuclear
8.
J Pharm Sci ; 113(1): 167-175, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37871777

RESUMO

Drug effects are often assumed to be directly proportional to the fraction of occupied targets. However, for a number of antagonists that exhibit target-mediated drug disposition (TMDD), such as angiotensin-converting enzyme (ACE) inhibitors, drug binding to the target at low concentrations may be significant enough to influence pharmacokinetics but insufficient to elicit a drug response (i.e., differences in drug-target binding affinity and potency). In this study, a pharmacokinetic/pharmacodynamic model for enalaprilat was developed in humans to provide a theoretical framework for assessing the relationship between ex vivo drug potency (IC50) and in vivo target-binding affinity (KD). The model includes competitive binding of angiotensin I and enalaprilat to ACE and accounts for the circulating target pool. Data were obtained from the literature, and model fitting and parameter estimation were conducted using maximum likelihood in ADAPT5. The model adequately characterized time-courses of enalaprilat concentrations and four biomarkers in the renin-angiotensin system and provided estimates for in vivo KD (0.646 nM) and system-specific parameters, such as total target density (32.0 nM) and fraction of circulating target (19.8%), which were in agreement with previous reports. Model simulations were used to predict the concentration-effect curve of enalaprilat, revealing a 6.3-fold increase in IC50 from KD. Additional simulations demonstrated that target reserve and degradation parameters are key factors determining the extent of shift of enalaprilat ex vivo potency from its in vivo binding affinity. This may be a common phenomenon for drugs exhibiting TMDD and has implications for translating binding affinity to potency in drug development.


Assuntos
Enalaprilato , Peptidil Dipeptidase A , Humanos , Enalaprilato/farmacologia , Peptidil Dipeptidase A/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Ligação Competitiva
9.
J Am Chem Soc ; 146(1): 187-200, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38118119

RESUMO

The affinity and selectivity of small molecules for proteins drive drug discovery and development. We report a fluorescent probe cellular binding assay (FPCBA) for determination of these values for native (untagged) proteins overexpressed in living cells. This method uses fluorophores such as Pacific Blue (PB) linked to cell-permeable protein ligands to generate probes that rapidly and reversibly equilibrate with intracellular targets, as established by kinetic assays of cellular uptake and efflux. To analyze binding to untagged proteins, an internal ribosomal entry site (IRES) vector was employed that allows a single mRNA to encode both the protein target and a separate orthogonal fluorescent protein (mVenus). This enabled cellular uptake of the probe to be correlated with protein expression by flow cytometry, allowing measurement of cellular dissociation constants (Kd) of the probe. This approach was validated by studies of the binding of allosteric activators to eight different Protein Kinase C (PKC) isozymes. Full-length PKCs expressed in transiently transfected HEK293T cells were used to measure cellular Kd values of a probe comprising PB linked to the natural product phorbol via a carbamate. These values were further used to determine competitive binding constants (cellular Ki values) of the nonfluorescent phorbol ester PDBu and the anticancer agent bryostatin 1 for each isozyme. For some PKC-small molecule pairs, these cellular Ki values matched known biochemical Ki values, but for others, altered selectivity was observed in cells. This approach can facilitate quantification of interactions of small molecules with physiologically relevant native proteins.


Assuntos
Ésteres de Forbol , Proteína Quinase C , Humanos , Células HEK293 , Proteína Quinase C/química , Ligação Competitiva
10.
Colloids Surf B Biointerfaces ; 234: 113726, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38157765

RESUMO

Glyphosate is a widely used herbicide that poses both health and environmental risks. In this study, we propose a liquid crystal (LC)-based assay for glyphosate detection that exploits the unique properties of LC materials. The nematic LC 4-cyano-4'-pentylbiphenyl (5CB) was employed as the sensing material and a self-assembled monolayer of octadecyltrichlorosilane (OTS) was used to modify glass substrates. The assay involved strong competition for coordination with Cu2+ for glyphosate, resulting in changes in the LC texture. By monitoring and analyzing the optical images of the LC film using polarizing microscopy, we detected and quantified the glyphosate concentrations. The proposed assay demonstrated high sensitivity and selectivity toward glyphosate in the detection range of 1-300 nM with a limit of detection of 0.26 nM. Moreover, the assay successfully applied to analyze glyphosate in spiked samples, including tap water, soil, and cabbage, and satisfactory recovery rates were achieved. Based on this detection principle, capillary tube test strips were developed for on-site applications. The detection thresholds of the test strips were controlled by varying the Cu2+ concentration. The developed LC-based assay is a rapid and reliable glyphosate detection method with potential applications in environmental monitoring and food safety.


Assuntos
Herbicidas , Cristais Líquidos , 60658 , Cristais Líquidos/química , Ligação Competitiva , Água/química
11.
Sci Rep ; 13(1): 20305, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985681

RESUMO

Opiate alkaloids and their synthetic derivatives are still widely used in pain management, drug addiction, and abuse. To avoid serious side effects, compounds with properly designed pharmacological profiles at the opioid receptor subtypes are long needed. Here a series of 17-N-substituted derivatives of normorphine and noroxymorphone analogues with five- and six-membered ring substituents have been synthesized for structure-activity study. Some compounds showed nanomolar affinity to MOR, DOR and KOR in in vitro competition binding experiments with selective agonists [3H]DAMGO, [3H]Ile5,6-deltorphin II and [3H]HS665, respectively. Pharmacological characterization of the compounds in G-protein signaling was determined by [35S]GTPγS binding assays. The normorphine analogues showed higher affinity to KOR compared to MOR and DOR, while most of the noroxymorphone derivatives did not bind to KOR. The presence of 14-OH substituent resulted in a shift in the pharmacological profiles in the agonist > partial agonist > antagonist direction compared to the parent compounds. A molecular docking-based in silico method was also applied to estimate the pharmacological profile of the compounds. Docking energies and the patterns of the interacting receptor atoms, obtained with experimentally determined active and inactive states of MOR, were used to explain the observed pharmacological features of the compounds.


Assuntos
Receptores Opioides mu , Receptores Opioides , Receptores Opioides mu/metabolismo , Simulação de Acoplamento Molecular , Receptores Opioides/metabolismo , Ligação Competitiva , Relação Estrutura-Atividade , Receptores Opioides kappa/metabolismo
12.
J Virol ; 97(12): e0187022, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37991365

RESUMO

IMPORTANCE: Twenty-five years after the first report that HIV-2 infection can reduce HIV-1-associated pathogenesis in dual-infected patients, the mechanisms are still not well understood. We explored these mechanisms in cell culture and showed first that these viruses can co-infect individual cells. Under specific conditions, HIV-2 inhibits HIV-1 through two distinct mechanisms, a broad-spectrum interferon response and an HIV-1-specific inhibition conferred by the HIV-2 TAR. The former could play a prominent role in dually infected individuals, whereas the latter targets HIV-1 promoter activity through competition for HIV-1 Tat binding when the same target cell is dually infected. That mechanism suppresses HIV-1 transcription by stalling RNA polymerase II complexes at the promoter through a minimal inhibitory region within the HIV-2 TAR. This work delineates the sequence of appearance and the modus operandi of each mechanism.


Assuntos
Coinfecção , Regulação Viral da Expressão Gênica , Repetição Terminal Longa de HIV , HIV-1 , HIV-2 , Interferons , RNA Viral , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Humanos , Coinfecção/imunologia , Coinfecção/virologia , Repetição Terminal Longa de HIV/genética , HIV-1/genética , HIV-1/imunologia , HIV-2/genética , HIV-2/imunologia , HIV-2/metabolismo , RNA Viral/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Interferons/imunologia , Regiões Promotoras Genéticas/genética , Ligação Competitiva , RNA Polimerase II/metabolismo , Transcrição Gênica
13.
Acta Biochim Pol ; 70(4): 807-815, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37934513

RESUMO

OBJECTIVE: Circular RNAs (circRNAs) are enriched in the brain and involved in various central nervous system diseases. The potential role of circCCDC6 in cerebral ischemia-reperfusion defects was partly elucidated in the work. METHODS: A middle cerebral artery occlusion/reperfusion (MCAO/R) rat model and an oxygen-glucose deprivation and re-oxygenation (OGD/R)-treated SH-SY5Y cell model were constructed. CircCCDC6 expression in the two models was examined, and circCCDC6-involved mechanisms in neuronal pyroptosis and inflammation were analyzed through loss- and gain-of-function assays. RESULTS: MCAO/R rat brain tissues and OGD/R-treated SH-SY5Y cells exhibited upregulated circCCDC6. Silencing circCCDC6 attenuated neuronal pyroptosis and inflammation in the brain tissue of MCAO/R rats. Overexpressing circCCDC6 or inhibiting miR-128-3p stimulated OGD/R-induced pyroptosis and inflammation in SH-SY5Y cells, while upregulating miR-128-3p attenuated OGD/R injury. CircCCDC6 silencing-induced effects on SH-SY5Y cells were antagonized by TXNIP overexpression. CONCLUSION: Mechanistically, circCCDC6 mediates miR-128-3p and activates TXNIP/NLRP3, thereby promoting OGD/R-induced neuronal pyroptosis and inflammation. CircCCDC6 may provide a new strategy for the treatment of MCAO/R.


Assuntos
Isquemia Encefálica , MicroRNAs , Neuroblastoma , Traumatismo por Reperfusão , Animais , Humanos , Ratos , Apoptose , Ligação Competitiva , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Glucose/farmacologia , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/metabolismo , Inflamação , MicroRNAs/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Reperfusão , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo
14.
Phys Chem Chem Phys ; 25(41): 28479-28496, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37846774

RESUMO

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) continues to spread globally, and rapid viral evolution and the emergence of new variants pose challenges to pandemic control. During infection, the spike protein of SARS-CoV-2 interacts with the human ACE2 protein via its receptor binding domain (RBD), and it is known that engineered forms of ACE2 can compete with wild-type (WT) ACE2 for binding to inhibit infection. Here, we conducted multiple replica molecular dynamics (MRMD) simulations to study the mechanisms of the engineered ACE2 variants 3N39 and 3N94 and provide directions for optimization. Our findings reveal that engineered ACE2 is notably more efficacious in systems that show weaker binding to WT ACE2 (i.e., WT and BA.1 RBD), but also faces immune escape as the virus evolves. Moreover, by modifying residue types near the binding interface, engineered ACE2 alters the electrostatic potential distribution and reconfigures the hydrogen bonding network, which results in modified binding to the RBD. However, this structural rearrangement does not occur in all RBD variants. In addition, we identified potentially engineerable beneficial residues and potentially engineerable detrimental residues in both ACE2 and RBD. Functional conservation can thus enable the optimization of these residues and improve the binding competitiveness of engineered ACE2, which therefore provides additional immune escape prevention. Finally, we conclude that these findings have implications for understanding the mechanisms responsible for engineered ACE2 and can help us to develop engineered ACE2 proteins that show superior performance.


Assuntos
Enzima de Conversão de Angiotensina 2 , Simulação de Dinâmica Molecular , Humanos , Sítios de Ligação , Ligação Competitiva , Pandemias , SARS-CoV-2/genética , Ligação Proteica , Mutação
15.
J Immunol Methods ; 523: 113575, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37844794

RESUMO

Biotherapeutics have the potential to trigger undesired immune responses in the patients. For therapeutic proteins, immunogenicity is manifested as anti-drug antibodies (ADA). Because ADA could compromise pharmacokinetics, efficacy, and safety, regulatory agencies require immunogenicity assessment during clinical development. A tiered bioanalytical approach is recommended to monitor clinical immunogenicity, and neutralizing antibodies (NAb) are studied in Tier 4 if the molecule is immunogenic. Although cell-based assays, which reflect the pharmacological mechanism of action, are in some cases the preferred assay format for detecting NAbs, they are associated with operational complexity and sometimes suboptimal assay performance. Alternatively, non-cell-based assays have also been developed and implemented. In our current study, a competitive ligand binding assay (CLBA) was developed to detect NAbs for insulin efsitora alfa (efsitora, basal insulin Fc, LY3209590), a novel fusion protein being studied for the treatment of Type 1 diabetes and Type 2 diabetes. The CLBA demonstrated acceptable sensitivity, drug tolerance, precision, and robustness, and thus provides a suitable approach for detecting NAbs against efsitora.


Assuntos
Anticorpos Neutralizantes , Diabetes Mellitus Tipo 2 , Humanos , Insulina , Ligantes , Tolerância a Medicamentos , Ligação Competitiva
16.
Arch Biochem Biophys ; 747: 109753, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714251

RESUMO

The MF30 monoclonal antibody, which binds to the myosin subfragment-2 (S2), was found to increase the extent of myofibril shortening. Yet, previous observations found no effect of this antibody on actin sliding over myosin during in vitro motility assays with purified proteins in which myosin binding protein C (MyBPC) was absent. MF30 is hypothesized to enhance the availability of myosin heads (subfragment-1 or S1) to bind actin by destabilizing the myosin S2 coiled-coil and sterically blocking S2 from binding S1. The mechanism of action likely includes MF30's substantial size, thereby inhibiting S1 heads and MyBPC from binding S2. Hypothetically, MF30 should enhance the ON state of myosin, thereby increasing muscle contraction. Our findings indicate that MF30 binds preferentially to the unfolded heavy chains of S2, displaying positive cooperativity. However, the dose-response curve of MF30's enhancement of myofibril shortening did not suggest complex interactions with S2. Single, double, and triple-stained myofibrils with increasing amounts of antibodies against myosin rods indicate a possible competition with MyBPC. Additional assays revealed decreased fluorescence intensity at the C-zone (central zone in the sarcomere, where MyBPC is located), where MyBPC may inhibit MF30 binding. Another monoclonal antibody named MF20, which binds to the light meromyosin (LMM) without affecting myofibril contraction, showed less reduction in fluorescence intensity at the C-zone in expansion microscopy than MF30. Expansion microscopy images of myofibrils labeled with MF20 revealed labeling of the A-band (anisotropic band) and a slight reduction in the labeling at the C-zone. The staining pattern obtained from the expansion microscopy image was consistent with images from photolocalization microscopy which required the synthesis of unique photoactivatable quantum dots, and Zeiss Airyscan imaging as well as alternative expansion microscopy digestion methods. Consistent with the hypothesis that MF30 competes with MyBPC binding to S2, cardiac tissue from MyBPC knockout mice was stained more intensely, especially in the C-zone, by MF30 compared to the wild type.


Assuntos
Actinas , Microscopia , Animais , Camundongos , Actinas/metabolismo , Ligação Competitiva , Miosinas/metabolismo , Subfragmentos de Miosina/metabolismo , Anticorpos Monoclonais
17.
Proc Natl Acad Sci U S A ; 120(39): e2308435120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37733739

RESUMO

GPR34 is a functional G-protein-coupled receptor of Lysophosphatidylserine (LysoPS), and has pathogenic roles in numerous diseases, yet remains poorly targeted. We herein report a cryo-electron microscopy (cryo-EM) structure of GPR34 bound with LysoPS (18:1) and Gi protein, revealing a unique ligand recognition mode with the negatively charged head group of LysoPS occupying a polar cavity formed by TM3, 6 and 7, and the hydrophobic tail of LysoPS residing in a lateral open hydrophobic groove formed by TM3-5. Virtual screening and subsequent structural optimization led to the identification of a highly potent and selective antagonist (YL-365). Design of fusion proteins allowed successful determination of the challenging cryo-EM structure of the inactive GPR34 complexed with YL-365, which revealed the competitive binding of YL-365 in a portion of the orthosteric binding pocket of GPR34 and the antagonist-binding-induced allostery in the receptor, implicating the inhibition mechanism of YL-365. Moreover, YL-365 displayed excellent activity in a neuropathic pain model without obvious toxicity. Collectively, this study offers mechanistic insights into the endogenous agonist recognition and antagonist inhibition of GPR34, and provides proof of concept that targeting GPR34 represents a promising strategy for disease treatment.


Assuntos
Inibição Psicológica , Neuralgia , Humanos , Microscopia Crioeletrônica , Ligação Competitiva
18.
Org Biomol Chem ; 21(34): 6995-7004, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37584648

RESUMO

A series of novel N-sulfonyl pyridinium fluorophores were designed, synthesized, and explored in terms of their ability to bind with serum albumins. Upon binding the fluorophores with BSA, noticeable emission wavelength or intensity changes accompanied by color changes were observed. Competitive binding studies revealed that the fluorophore selectively binds to the warfarin site, but the binding affinity also depends on the nature of the scaffold. Additionally, the fluorophores were employed to detect spiked serum albumin in artificial urine. Cellular imaging experiments indicated that the fluorophores accumulate within lipid droplets (LDs), suggesting their potential as promising biomarkers for lipid droplets. Furthermore, the fluorescence intensity, number, and size of LDs increased upon serum starvation.


Assuntos
Gotículas Lipídicas , Albumina Sérica , Gotículas Lipídicas/metabolismo , Albumina Sérica/metabolismo , Corantes Fluorescentes/metabolismo , Ligação Competitiva
19.
Bioorg Med Chem Lett ; 94: 129448, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37591315

RESUMO

We report here small molecules consisting of dichlorophenyl substituted oxindole that is further tagged with pyrrole/indole moieties. These molecules were designed on the basis of the analysis of binding mode of 5-LOX with arachidonic acid and zileuton. The molecules traverse the active site pocket of the enzyme that otherwise hosts AA and zileuton. Moreover, with a provision of derivatization at pyrrole/indole-N, the physico-chemical properties of the molecules can be adjusted. Appreciable 5-LOX inhibitory activities of the compounds in sub-micromolar range were observed and their aqueous solubility, binding with human serum albumin and stability in blood plasma and liver microsomes were checked. The Michaelis-Menten constants obtained during the binding of the compounds with 5-LOX indicated competitive binding of the compounds with the enzyme. Overall, the combination of molecular modelling and experimental studies identified promising molecules against inflammatory diseases.


Assuntos
Indóis , Inibidores de Lipoxigenase , Pirróis , Humanos , Ligação Competitiva , Indóis/farmacologia , Ligantes , Araquidonato 5-Lipoxigenase , Inibidores de Lipoxigenase/química
20.
Environ Sci Technol ; 57(25): 9130-9139, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37261382

RESUMO

Large numbers of pollutants competitively inhibit the binding between thyroid hormones and transthyretin (TTR) in vitro. However, the impact of this unintended binding on free thyroid hormones in vivo has not yet been characterized. Herein, we established a quantitative in vitro to in vivo extrapolation (QIVIVE) method based on a competitive binding model to quantify the effect of TTR-binding chemicals on free thyroid hormones in human blood. Twenty-five TTR-binding chemicals including 6 hydroxyl polybromodiphenyl ethers (OH-PDBEs), 6 hydroxyl polychlorobiphenyls (OH-PCBs), 4 halogenphenols, 5 per- and polyfluorinated substances (PFASs), and 4 phenols were selected for investigation. Incorporating the in vitro binding parameters and human exposure data, the QIVIVE model could well predict the in vivo effect on free thyroid hormones. Co-exposure to twenty-five typical TTR-binding chemicals resulted in median increases of 0.080 and 0.060% in circulating levels of free thyroxine (FT4) and free triiodothyronine (FT3) in the general population. Individuals with occupational exposure to TTR-binding chemicals suffered 1.88-32.2% increases in free thyroid hormone levels. This study provides a quantitative tool to evaluate the thyroid-disrupting risks of TTR-binding chemicals and proposes a new framework for assessing the in vivo effects of chemical exposures on endogenous molecules.


Assuntos
Poluentes Ambientais , Bifenilos Policlorados , Pré-Albumina , Hormônios Tireóideos , Humanos , Ligação Competitiva , Bifenilos Policlorados/metabolismo , Pré-Albumina/metabolismo , Hormônios Tireóideos/metabolismo , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...